

Chemical weavings and coloured nets

Presenter: Benjamin Thompson (PhB Science) Research supervisor: Prof. Stephen Hyde

Metal Organic Frameworks (MOFs)

- Mixture separation
- Gas storage
- Speeding up chemical reactions
- Drug delivery

MOF structures

The geometry and topology (shape) of the organic (non-metal) frameworks are complicated.

Question: What are the possible frameworks MOFs can have?

Other types of interwoven nets

Complicated, '3D'

Simple, '2D'

Weavings to coloured nets

Weavings to coloured nets

Simplifying coloured nets

Weavings to coloured nets

MOF world

Pattern world

MOF world

Pattern world

We can classify MOFs with this correspondence!

Studying coloured nets

Question: How do we go about classifying coloured nets?

Studying coloured nets

Question: How do we go about classifying coloured nets?

- Delaney-Dress tiling theory
- Conway crankshafts

Conway Crankshafts

Pattern world

Crank world

We can classify MOFs by classifying cranks!

Classifying Conway cranks

Question: How do we classify cranks?

Classifying Conway cranks

Question: How do we classify cranks?

- Mathematics
- (and a computer)

Example output: triangular nets

Computer says

Example output: triangular nets

Example output: triangular nets

What patterns do these cranks correspond to?

We can also consider a square pattern where every corner has 6 squares (this lives in the hyperbolic plane)...

Let's see the corresponding 3D net!

Thanks for listening!

Image credits

- "<u>Dell Vostro 14 5000 Series Laptop</u>" by Vostrouser, copyright and related rights waived via <u>CC0</u>
- "Order-6 square tiling" by <u>Tamfang</u>, copyright and related rights waived under release to the public domain.
- Illustration of [Cu₂^I(CN){N(CN)₂}₂]⁻ taken from "Interpenetrating nets: Ordered, periodic entanglement. (Batten and Robson, 1998)
- Illustrations of MOFs by Stephen Hyde used with permission.