Theorem 5.6.1 in the course notes is quite confusing on a first read. Let's work through some examples to get a better understanding of it.

Question 1a

Let $T: R^{2} \rightarrow R^{2}$ be the linear transformation which projects points in the plane to the y-axis. Let

$$
b=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

1. What is the matrix A corresponding to T (using the standard basis of R^{2})?
2. Geometrically, describe the set of vectors $\left\{b-A v: v \in R^{2}\right\}$.
3. Geometrically, what is the smallest possible value of $\|b-A v\|$?
4. Give a geometric description of vectors v which attain the minimum possible value above.

Question 1b

Let

$$
A=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right], \quad b=\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

1. Is the equation $\mathrm{Av}=\mathrm{b}$ consistent?
2. What is the normal equation in z corresponding to $A v=b$?
3. Substitute A, b into the normal equation in the previous step, and solve for z.
4. How do your z values correspond to your geometric description in Question 1a?

Let's now apply Theorem 5.6.1 to calculate the distance between a point and a plane.

Question 2

Consider the linear transformation $T: R^{2} \rightarrow R^{3}$ given by matrix

$$
A=\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
-1 & -1
\end{array}\right]
$$

and let

$$
b=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] .
$$

1. What is the equation of the plane given by $\operatorname{Im} A$?
2. Geometrically, what is the closest point to b on the plane?
3. Is the equation $A x=b$ consistent?
4. What is the normal equation in z corresponding to this equation?
5. Solve the normal equation for z.
6. What is the value of $A z$? Is this value what you expected?

Question 3

Let $(a, b),(c, d)$ be two points in R^{2} with $a \neq c$, and let

$$
A=\left[\begin{array}{ll}
1 & a \\
1 & c
\end{array}\right], \quad q=\left[\begin{array}{l}
b \\
d
\end{array}\right] .
$$

1. What is the normal equation corresponding to $A x=q$?
2. Solve the normal equation above.

3 . What is the equation of the line through (a, b) and (c, d) ?
4. How is the line you found above related to your solutions of the normal equation?

