Let's revise some of the course content so far to help prepare for the prelim tomorrow.

Question 1

What is an example of a 2×2 matrix which is:

1. not invertible and not diagonalizable?
2. not invertible but diagonalizable?
3. invertible but not diagonalizable?
4. invertible and diagonalizable?

Question 2

Let U be the set of all points in 3-dimensional Euclidean space that lie in the $x y$ plane or the $x z$ plane. Prove or disprove the following statement: U is a subspace of 3-dimensional Euclidean space.

Question 3

Consider the following vectors:

$$
\alpha_{1}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right], \quad \alpha_{2}=\left[\begin{array}{l}
2 \\
3 \\
4 \\
1
\end{array}\right], \quad \alpha_{3}=\left[\begin{array}{l}
3 \\
4 \\
1 \\
2
\end{array}\right], \quad \alpha_{4}=\left[\begin{array}{l}
4 \\
1 \\
2 \\
3
\end{array}\right]
$$

1. Is the set $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\}$ a basis for 4 -dimensional Euclidean space?
2. Can the vector

$$
\beta=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

be expressed an a linear combination of $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$? If so, provide such an expression. If not, prove it is impossible to do so.

Question 4

Consider the plane in 3-dimensional Euclidean space given by the equation $x+2 y+3 z=0$.

1. What is a 3×3 matrix whose null space is this plane?
2. What is a 3×3 matrix whose column space is this plane?

Question 5

Let A, B, C be 2×2 matrices, and let tr denote the trace of a matrix. Are the following true or false? Justify your answers.

1. $\operatorname{tr}(A B C)=\operatorname{tr}(C B A)$
2. $\operatorname{tr}(A B C)=\operatorname{tr}(B C A)$
