First part

- Given a line, a circle, and a point on the circle, the line is said to be tangent to the circle at the point if it intersects the circle at the point and nowhere else. Such a line is called a tangent line to the circle.
- Let S^{1} refer to the circle in the Euclidean plane centered at the origin with radius 1.

Main question: Characterize all tangent lines to S^{1}.

- Specifically, any point on S^{1} can be described in terms of an angle $\theta .{ }^{1}$ What is an equation describing the tangent line to S^{1} at the point corresponding to θ ?

[^0]
Second part

1. Characterize all matrices in row-echelon form with the following property: If any entry is changed, the matrix is no longer in row-echelon form.
2. Create a system of three linear equations in three variables whose solution set geometrically corresponds to:
(a) The empty set
(b) A point
(c) A line
(d) A plane
(e) Euclidean 3-space.
3. In the example above whose solution set is a plane, describe the solution set in terms of a linear combination of vectors.

[^0]: ${ }^{1}$ E.g. The right-most point of S^{1} corresponds to $\theta=0$, the top-most point of S^{1} corresponds to $\theta=\pi / 2$.

