Question 1

Let

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

Express A^{n} for every positive integer n as a 2×2 matrix.

Question 2

- True or false: Every symmetric matrix can be expressed as a sum of two non-symmetric matrices.
- True or false: if the product of two matrices A, B is a zero matrix, then A or B is also a zero matrix.

Question 3

Let B be the transformation of the Euclidean plane which rotates every point by $\pi / 2$ radians around the origin.

- Given an arbitrary point $\left(x^{\prime}, y^{\prime}\right)$ in the plane, what are the coordinates of $B\left(\left(x^{\prime}, y^{\prime}\right)\right)$?
- Represent B as a matrix.
- Give two conceptually different explanations as to why $B^{4}=I$.

Question 4

Characterize all 2×2 matrices A which satisfy $A^{2}=I$.

