Question 1

Let a, b be two vectors in the Euclidean plane $\left(R^{2}\right)$ which form angle θ. Prove that

$$
a \cdot b=\|a\| \cdot\|b\| \cos \theta
$$

where $\|a\|$ and $\|b\|$ are the lengths of a, b respectively.

Question 2

Let T be a triangle in the Euclidean plane, and let a, b, c be vectors going from the origin to the corners of T.

1. Express the centroid of T in terms of a, b, c. (If you are unsure of the definition of the centroid of a triangle, check out the definition on Wikipedia.)
2. Let L be a line passing through a corner of T and its centroid. Let L_{1} be the length of the line segment of L going from the corner to the centroid, and let L_{2} be the length of the line segment of L going from the centroid to the side opposite the corner. Calculate the ratio $L_{1}: L_{2}$.

Question 3

Given two intersecting planes in Euclidean space $\left(R^{3}\right)$, their smaller angle of intersection is called their dihedral angle.

1. Calculate the dihedral axis of the $x y$-plane and the $x z$-plane.
2. Imagine two adjacent faces of a tetrahedron as planes. Calculate their dihedral angle.
3. Prove that the dihedral angle of the tetrahedron (calculated above) is not a rational multiple of π.
4. Prove that a cube cannot be cut up into small pieces and reassembled to form a tetrahedron. (Check out the Wikipedia page of the Dehn invariant.)
