Question 1

A ray of light traveling with direction vector

$$
v=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
$$

in Euclidean space $\left(R^{3}\right)$ bounces off a mirror within the $x y$-plane.

1. What is the direction vector of the ray after it bounces off the mirror?
2. What is the angle between v and the mirror?

Question 2

Now assume a ray of light with direction vector v bounces off a mirror in the plane given by the equation $x+y+z=1$.

1. What is the direction vector of the ray after it bounces off the mirror?
2. What is the angle between v and the mirror?

Question 3

Finally, assume a ray of light v bounces off a spherical mirror at point

$$
p=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

where the mirror is a perfect sphere centered at the origin. (The equation $x^{2}+y^{2}+z^{2}=1$ describes such a sphere.)

1. What is the direction vector of the ray after it bounces off the mirror?
2. What is the angle between v and the mirror?
