Question 1

One of the most important inequalities in mathematics in the Cauchy-Schwarz inequality. In the Euclidean setting, it states that for all vectors $a, b \in R^{n}$,

$$
|a \cdot b| \leq\|a| | \cdot\| b \|
$$

where the dot on the left represents the dot product and the dot on the right is multiplication of real numbers.

1. Using elementary algebra, prove the Cauchy-Schwarz inequality for vectors in the Euclidean plane $\left(R^{2}\right)$.
2. Using the Cauchy-Schwarz inequality, prove that when $x_{1}+x_{2}+\ldots+x_{n} \geq 0$,

$$
\sqrt{\frac{x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}}{n}} \geq \frac{x_{1}+x_{2}+\ldots x_{n}}{n}
$$

3. Prove that if $a+b+c=1$, then $a^{2}+b^{2}+c^{2} \geq \frac{1}{3}$.
4. Using the Cauchy-Schwarz inequality or otherwise, prove that for $a, b \geq 0$,

$$
\frac{a+b}{2} \geq \sqrt{a b}
$$

5. Prove that for any $a \geq 0$,

$$
\frac{1+a}{2 \sqrt{a}}>1
$$

Note: This inequality is a step that appears in some proofs of the Riemann Mapping Theorem ${ }^{1}$, one of the most important results in Complex Analysis.

Question 2

For what values of a, b, are the vectors

$$
\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \quad\left[\begin{array}{c}
1 \\
a \\
a^{2}
\end{array}\right], \quad\left[\begin{array}{c}
1 \\
b \\
b^{2}
\end{array}\right],
$$

linearly independent?

[^0]
[^0]: ${ }^{1}$ For example in p. 158 of Functions of One Complex Variable by John B. Conway

